Modeling Airborne Emissions from Agricultural Fumigants

David A. Sullivan

Certified Consulting Meteorologist Sullivan Environmental Consulting, Inc. sullivan-environmental.com

Two Steps to Modeling Exposures

- On-field profiles
- Flux chambers
- Ambient networks
- Dispersion modeling
 - **FEMS**PERFUM

Emissions Assessment

Based on IHF Method

Integrated Horizontal Flux Method

Basic IHF equation:

$$Q_{i} = \frac{1}{x} \int_{z_{o}}^{z_{p}} \left(\overline{u}_{z} \overline{\chi}_{z \, dw} \right) dz$$

IHF equation with regression coefficients inserted:

$$Q_{i} = \frac{1}{x} \int_{Z_{o}}^{z_{p}} (A_{i} * Ln(Z) + B_{i}) * (C_{i} * Ln(Z) + D_{i}) dz$$

Equation to compute top of plume for trapezoid rule integration: $z_{p} = e^{\left(\frac{(0.1-D)}{C}\right)}$

Design Considerations

Reference	Field Size	eld Size Fetch or Recommended Fetch (m)		# Sampling	Height of
				heights	Highest
					sampler
		IHF	AD		(m)
Beauchamp et. al., 1978	0.4 hectare	36		4	1.5
Das, 2003	135 hectares		500	2	2.5
Denmead, Freney, & Simpson, 1977	24 m fetch	24		4	2.24
Freney & Simpson, 1983		30	100	5	0.1 x fetch
Majewski, 1999			100	4-8	2
Majewski et al, 1990	1 hectare		100H	5	1.5 m
McInnes. et. al., 1985		20		5	2.4
Phillips, 2004			NA	2	6
Summer, 2004	7.5 m^2		NA	5	2.4
Wilson, 1982			300		
Wilson, 1992		20	200	5	
Yates et al., 1996b	3.5 hectares		100	6	1.6
Yates et al., 1997	3.5 hectares			9	2.6

Complicating Factors to Consider

 IHF Limitations Involved with Simplification of Dropping the <u>Fluctuating Term</u>:

•
$$u_z \chi_{z \, dw} = \overline{u}_z \overline{\chi}_{z \, dw} + u_z' \chi_z'_{dw}$$

• < 5% <u>understatement</u> (50m fetch; $\leq 0.01 \text{ m z}_{o}$

- IHF Limitations Involved with Varying <u>Saturation</u>
 <u>Deficits</u> with Fetch - <u>potential for overstatement</u>
 - Fetch > 25-30 m relatively small factor

Complicating Factors to Consider (Cont.)

Simplifying assumptions of profile shape are complicated by modification to surface by irrigation and tarped surfaces

<u>Caution: No Model Calibration with On-</u> <u>Field Flux - - Use Unbiased Dispersion</u> <u>Model</u>

- Ambient method costly and limiting in terms of coverage, but self-correcting
- Models such as ISCST3 with substantial nocturnal bias can be a mismatch with independent IHF data
- CALPUFF 6 with 5-minute time steps is recommended

Example: Nocturnal Period with Light Wind Speeds

ISCST3 cannot replicate Measured concentration field **CALPUFF 6** can replicate Measured concentration field

UTM X (km)

305.0

6000

305.5

6000 5750 5500

5250

5000 4750 4500

4250

4000

3750 3500

3250

3000

2750 2500 2250

2000

1750 1500

1250

1000

750 500 250

100

75

306.5

<u>66</u>

<u>64</u>

124

175

<u>157</u>

271

306.0

Dispersion Modeling

Based on FEMS / CALPUFF 6

Why FEMS / CALPUFF 6?

- EPA recommended model of choice for complex winds (which are limited factor for agricultural fumigants) = CALPUFF 6
- Shown to replicate measured concentration fields while ISCST3 alternative cannot
- ISCST3 has been delisted by EPA in 2006 as obsolete model

How Can CALPUFF 6 Be used if CALPUFF 5 is Regulatory Version?

- For simple area sources such as used in FEMS, CALPUFF 6 and CALPUFF 5 with matched to hourly time steps are <u>equivalent</u>
- If CALPUFF 6 = CALPUFF 5 at 1-hour, physics are the same for 5 minute steps
- Alternative of ISCST3: model has no regulatory status at this time

Current Benefits of FEMS / CALPUFF 6

- Only alternative to realistically represent critical nocturnal concentrations
- State-of-the-art Monte Carlo treatment of uncertainty as approved by SAP
 - Emission rates
 - Meteorological factors
- Suitable for modeling large PNW fields (> 40 acres)

Benefits in Development at this <u>Time</u>

- Seasonal emissions scalars per Chain 2D relative scaling
 - Improved accuracy for non-summer periods
 - Lower buffer zones (non-summer)
- More realistic simulations of center pivot applications - wedge-by-wedge sequence

